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ABSTRACT 
 

This research concerns information security and 

computer-network defense.  It addresses how to handle the 

information of log files and intrusion-detection systems to 

recognize when a system is under attack.  But the goal is 

not the usual one of denying access to the attacker but 

providing a justification for deceptive actions to fool the 

attacker.  We implemented a simple demonstration of how two 

different kinds of open-source intrusion-detection systems 

can efficiently pool data for this purpose. 
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I. INTRODUCTION 

In the "information age" the world became a more 

interconnected place.  Critical infrastructure, business 

operations, bank operations, military operations, and 

communication systems are totally dependent on computer 

systems that control almost all aspects of life.  The 

global network includes faxes, cellular phones, satellites, 

and more than 650 million people connected to the Internet. 

With this scenario, every year the larger software 

corporations in the world, such as Microsoft, SUN, Oracle, 

and Linux Distributors, release a new version of their 

operating systems (OS), service packs, databases, and 

desktop and server applications for all of those platforms.  

Usually security is not the main goal of all of these 

programs and, even if it were, checking the integrity of 

all these millions of lines of code is impossible. 

Added to this is the number of easily available 

"hacker" web sites on the Internet providing tools to 

exploit this ocean of vulnerabilities.  A factor urging a 

change in the approach to defending networks is that hacker 

tools are becoming more automatic and no longer require 

deep knowledge to use them.  Only a few minutes of exposure 

could create millions of dollars of losses due to sensitive 

information becoming accessible by the enemy. 

Michael and Riehle suggested in [1] a different 

defending information systems approach: "Intelligent 

Software Decoys." This approach borrows ideas from military 
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strategy.  Instead of blocking or fighting attackers as 

soon as they are detected, a decoy system tries to keep 

them occupied by making them believe that the assault is 

successful and progressing as expected.  To do this, we 

must decide how to detect the intrusion, how to respond to 

this attack, and how to implement decoy capabilities. 

Implementing a complete decoy system is out of the 

scope of this research.  Therefore, the experimental design 

that we developed is only a proof of concept.  It shows how 

to coordinate an intrusion-detection system with software 

decoys and how to improve the performance of software decoy 

application with an intrusion-detection system.  Our 

research is based on familiar defense concepts like 

defense-in-depth, intrusion-detection architecture, secure 

log files, data reduction, the principle of least 

privilege, and reference monitor. In Chapter II we will 

define these concepts. 

Chapter III will propose a design that is capable of 

integrating messages read from log files, alerts read from 

the intrusion-detection alert file, and messages read from 

all devices installed to protect our system.  It borrows 

some principles from real war strategies, including 

integration of a diversity of resources to provide more 

flexibility. 

Chapters IV, V and VI will show the experimental 

design architecture, the data collected from this 

experimentation and the analysis of the gathered 

information.  As we built the design based on open-source 

applications, we developed installation guidelines, which 
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are included in the appendices, answering one of the most 

important objections to open-source: the lack of good 

documentation. 
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II. BACKGROUND AND DEFINITIONS 

A. SOFTWARE DECOYS 

Since in ancient times Sun Tzu [2] wrote that “all 

warfare is based on deception”, deception has a very 

important role in warfare.  Dunnigan started his book [3] 

saying, “The most potent weapon in any soldier’s arsenal is 

deception.” Deception is an art supported by technology 

that, when successful, can have a devastating impact on 

victims.  Cohen [4] suggests two way of defeating an enemy 

in attacks on computers ("information warfare"): have an 

overwhelming force of some sort (be faster, smarter, better 

prepared, better supplied, first to strike, better 

positioned, and so forth), or manipulate the enemy into 

reduced effectiveness by inducing misperceptions that cause 

the enemy to misuse their capabilities (i.e., use 

deception). 

In conventional war, the nine main deception types 

defined by Dunnigan are: concealment, camouflage, ruses, 

demonstrations, feints, false and planted information, 

lies, displays and insight.  From this list, Neil Rowe [5] 

explained that only the last 3, lies, displays and insight, 

are potential defensive tactics for cyberspace.  

Appropriate deceptive tactics depend on the value of the 

resources being protected and the danger of the attack [6].  

However, the general idea is to limit or confine attacks 

that get through the first line of defense rather than stop 

them.  Deception differs from honeypots [7] by providing 

defense not data. 
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Deception could be one more layer in our defense-in-

depth, thus confusing an attack plan for a while.  Clearly, 

in the nanosecond computer world, minutes can be a long 

period of time.  Delays give time to win race conditions 

against the attacker’s automatic tools, permitting the 

analysis of the attack and a plan to respond.  

 Before responding to an attacker or outsmarting them, 

the system must detect the attacker.  Thus deception 

capabilities must be integrated in the defense operations.  

This would start with a monitoring system, which is 

described in the next item. 

Thinking about the relationship between time and 

defense, Winn Schwartau in [8] suggested a formula (P > D + 

R) for a security model.  He says that if the time value 

afforded a system by protection (P) is greater than the 

amount of time it takes to detect (D) and respond (R) to an 

attack then a secure environment is evident.  A system with 

deception (C) suggests a new formula: P + C > D + R.  This 

gives us a quantitative justification for deception. 

Intelligent software decoys [9], has both a protection 

and counterintelligence component.  The decoy consists of 

one or more software wrappers placed around a unit of 
software (e.g., component or method), with each wrapper 

consisting of a set of rules for detecting and responding 

to suspicious behavior.  Instead of indicating to the 

attacker that he has been detected, the decoy keeps the 

attacker occupied by creating the illusion for the attacker 

that the attack is progressing as expected, using 

techniques ranging from fake error messages to redirecting 
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the interaction with the attacking computer process to a 

virtual sandbox.  

The goal is threefold: to gather information about the 

nature of the attack, adjust the system’s defenses based on 

the intelligence information, and cause the attacker to 
experience an opportunity cost (e.g., waste attack 

resources that could have been better applied, or expose 

sources and methods). 

 

B. LOG FILES 

Log files and intrusion-detection systems provide our 

monitoring mechanisms for a computer operating system.  Log 

files are defined as files that contain messages about the 

system, including the kernel, services, and applications 

running on it [10].  Today all operating systems, 

applications, and network devices have the capability to 

log information and events that occurred in their 

environment.  Thomas A. Wall wrote in [11] that the better 

the log stream, the pattern library, and the analysis 

tools, the better the overall security.  He also defines 

two goals of a monitoring system: reducing the likelihood 

of an attack going unlogged to as close to zero as is 

affordable, and increasing the likelihood that the events 

logged for an attack will be recognized as an attack to as 

close to 100 percent as is affordable.  He also discusses 

the shape of a logging system, the areas to be logged, the 

logging mechanisms, the logging system design, log 

management, and log analysis. 
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In an ideal network, the system log records every 

event.  This approach is technically very difficult, as few 

systems have the resources to store all this information.  

Another difficulty is the human incapacity to check 

thousands of lines of information of many log files to 

figure out what is happening.  Therefore the log system is 

configured to reduce this ocean of information by recording 

only events necessary to detect known common attack 

patterns, events necessary to detect unusual patterns of 

access, and information about the continued trustworthiness 

of the logging system. 

Different log files keep different information.  For 

example, there is a default system log file, a log file for 

security messages, and a log file for kernel events.  Some 

log files are controlled by a daemon called syslogd.  In 

our experimental design based on the Linux platform we will 
use syslog.  A list of log messages maintained by syslogd 

can be found in the /etc/syslog.conf configuration file.  

Syslog is the primary logging mechanism for most Internet-

related equipment and the most common network logging 

mechanism in the TCP/IP world.  Syslog runs on all 

Unix/LINUX systems, and on many other operating systems, 

including Windows platforms that have adaptors. 

The log files that we used in our experiments are in 

the /var/log directory.  Most log files are in plain text 

format.  In our experiments, we will use a Perl script to 

read this text and do data reduction.  In addition we can 
use any text editor or logviewer to inspect the information 

as shown in Figure 1 [10]. 
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Figure 1.   Log File Monitor Red Hat 8.0 

 

C. PERL SCRIPT – THE LOG MONITOR 

A log monitor is a process, or daemon, which monitors 

log messages produced by the computer system and programs 

running on it [12].  A properly designed log monitor can 

recognize unusual activity (or inactivity), alert 

administrators to problems, gather statistics about system 

activity, or as in our research, act as the main source for 

the system to take automatic action against a threat. 

A log monitor is an agent, which responds 

automatically to conditions revealed by one or more system 

log messages.  The response may consist of autonomous 

actions to handle a situation and/or notification of a 
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human administrator.  A stateful log monitor is one that 

infers the presence of a condition requiring attention by 

compiling data from more than one log message.  Our 

experiments used a stateful log monitor implemented by a 

Perl script. 

Log monitoring requires string manipulation, and Perl 

has features that make it one of the most powerful 

languages for string manipulation.  Lutz Prechelt [13] 

tested 80 implementations of the same set of requirements 

and compared some properties, such as run time, memory 

consumption, source text length, and the amount of effort 

required to write them.  The results indicate that for the 

given programming problem, which regards string 

manipulation and searches, a “script language” such as Perl 

is more productive than “conventional languages” such as C, 

C++ and Java.  In terms of run time and memory consumption, 

“script languages” often turned out better than Java and 

not much worse than C and C++. 

For future implementations of deception capabilities, 

Perl is also flexible in implementing rules, reading 

configuration files, reading streams from networks, 

implementing servers and sockets and manipulating a 

system’s call.  Others Perl advantages include: 

• Provides features necessary for large projects 

like modularization and object-oriented techniques. 

• Provides great flexibility for manipulation of 

strings using regular expressions. 
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• Allows the use of all system calls including 

those necessary for network tasks. 

• Provides a way to dynamically load a module 

including code written in C. 

 

D. INTRUSION-DETECTION SYSTEMS 

Intrusion-detection systems (IDSs) are important 

software tools.  [14] and [15] provide some background.  

Some useful definitions: 

• Intrusion: Any set of actions that attempt to 

compromise the integrity, confidentiality, or 

availability of a computer resource [14]. 

• Intrusion detection: The problem of identifying 

actions that attempt to compromise the integrity, 

confidentiality, or availability of a computer 

resource [14]. 

• Monitored system or system: Program, application, 

host or a network of computer resources that is being 

monitored [14]. 

• Intrusion-detection systems: Systems that collect 

information from a variety of system and network 

sources and, then, analyze the information for signs 

of intrusion (attacks coming from outside the 

organization) and misuse (attacks originating inside 

the organization) [16]. 
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Crosbie and Spafford in [17] identified desirable 

characteristics of an intrusion-detection system: 

• It must run continually with no human 

supervision. 

• It must be fault tolerant. 

• It must resist subversion and monitor itself. 

• It must impose a minimal overhead on the systems 

where it runs. 

• It must be as “quiet” as possible, precluding 

professional attackers from realizing that they are 

being monitored. 

• It must be configurable and expectantly adaptable 

to changes in the system and to user behavior over 

time. 

• It must be able to detect unknown attacks as much 

as possible without generating a lot of false positive 

and false negative. 

• It must be able to avoid the situation of being 

used as a denial of service mechanism. 

• It must report and launch automated decoy 

capabilities as soon as possible after an intrusion or 

an attack detection. 
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Intrusion-detection systems can be classified by their 

data collection mechanisms.  We can classify IDSs as direct 

or indirect [14].  Indirect IDSs could be sub-classified 

into network-based or host-based with direct data 

collection mechanisms being sub-classified into internal or 

external.  Table 1 clarifies these definitions. 

Data Collection Mechanisms 
Direct Indirect 

Host-based Host-based Network-based 
Internal External   

Table 1.   Data Collection Mechanisms 

Internal IDSs are those whose code is incorporated in 

the monitored system.  We will use both, internal and 

external, in our experimental design. 

Indirect monitoring is the observation of a component 

through a separate mechanism or tool.  Direct monitoring is 

better than indirect for many reasons [14].  An intruder 

could potentially alter data from an indirect data source 

before the log monitor uses it, or it could be affected by 

non-malicious failures.  But the majority of IDSs use some 

form of indirect monitoring.  In our experimental design we 

will use both direct and indirect. 

Network-based IDSs (NIDSs) is the acquisition of data 

from the network, usually done by capturing packets as they 

flow through it.  Host-based IDSs (HIDSs) process data that 

originates in computers such as event log files.  Network-

based IDSs capture and analyze TCP/IP packets, and host-

based IDSs process event logs from operating systems, 

kernels and applications.  In our experimental design, we 
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will use both a NIDS and an HIDS.  Table 2 [15] summarizes 

the advantages of NIDSs and HIDSs. 

 

 Network-based IDS Host-based IDS 
 
A 
D 
V 
A 
N 
T 
A 
G 
E 
S 

• Can watch the whole 
network or any subsets 
of the network from one 
location. 

• Can monitor and detect 
network attacks (e.g., 
probes, scans, malicious 
and anomalous activity 
across the whole 
network. 

• Can become “invisible” 
for access. 

• Can prevent and log abuse of 
privilege attacks. 

• Can detect elevated privileges 
attacks. 

• Can detect for critical data 
access and modification. 

 
D 
I 
S 
A 
D 
V 
A 
N 
T 
A 
G 
E 
S 
 

• Can not detect host 
activity. 

• Can not scan protocols 
or content if network 
traffic is encrypted. 

• Can cause monitoring and 
detecting to become more 
difficult on modern 
switched network. 

• Can lose some packet 
when working in high-
speed network. 

• Can not trace network activity. 
• Can only work on specific 

platform. 
• Can interfere with implemented 

service activities running in 
the host. 

• Can not totally trust the host 
information, once the machine 
is compromised. 

Table 2.   HIDS and NIDS Comparison 

An increasing number of hybrid IDSs use both HIDS and 

NIDS components to augment the information collected and to 

better analyze it.  Such hybrids are better able to provide 

tamper-proof operation.  If an attacker tries to use the 

network to launch the attack, they would be monitored; if 

they launched an attack from the machine, they would also 

be monitored. 
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E. LIDS (LINUX INTRUSION-DETECTION SYSTEM) 

In our experiments we used LIDS [18] as our HIDS.  

LIDS provides protection to file and running processes and 

uses a security kernel.  Additionally, LIDS has a built-in 

portscan detector, which can be used to alert users to the 

warning signs of a possible intruder, and can send e-mail 

to the network administrator when a rule is broken.  These 

features could be considered response mechanisms and could 

be used to launch decoy capabilities. 

Besides this, the most important feature of LIDS is 

its implementation of the reference monitor concept.  A 

reference monitor [19] is an abstraction that allows active 

entities called subjects to make reference to passive 

entities called objects, based on a set of current access 

authorizations.  Subjects are processes executing in a 

particular domain in a computer system.  A domain of a 

process is defined as the set of objects which the process 

currently has the right to access according to each access 

mode. 

As described in [20], a security kernel is the only 

method proven to be effective at countering the threats of 

penetration and subversion of mechanism; therefore it is 

the only effective method of preventing illicit access to 

information under protection.  A security kernel is defined 

as the hardware and software that implements a reference 

monitor.  Files, records, and other types of information 

repositories can be built from primitive objects (read and 

write), but access control is provided by the reference 

monitor on the basis of these primitive objects over which 
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it has total control.  With regard to information warfare 

in particular, every security feature must itself be 

protected so that they can detect and respond.  This 

requires a kernel. 

Previous work of our project implemented a deceptive 

component [21] with security based on kernel modules.  LIDS 

works in the same way by improving Linux security at kernel 

level.  The main advantage of this solution over NAI 

Wrappers [22] is that LIDS is more comprehensive in its 

kernel capabilities.  In LIDS, the "root" (system 

administrator) is no longer all-powerful.  Some files, 

directories, and processes protected by LIDS cannot be 

modified even with the root password.  The advantage is 

that even if a vulnerability were found in a program that 

is running with root privilege, the damage of its 

exploitation would be limited. 

 

F. SNORT – A NETWORK INTRUSION-DETECTION SYSTEM 

Snort is an open-source free NIDS developed by Martin 

Roesch [23].  In early 2002, Snort was downloaded over 

10,000 times a week to protect government, corporate, home, 

and education sites.  Snort is small at 1.8 Mbytes in the 

last version (1.9), and extremely configurable, allowing 

users to create their own rules or even reconfigure its 

base functionality though its plug-in interface.  The 

schema in Figure 2 shows how Snort works [24]. 
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Figure 2.   Snort principle of function 

Figure 2 shows how the packet is sniffed off the 

network interface and passed to the packet decoder where it 

is partitioned into its layers.  If any preprocessors have 

been defined, they act upon the packet.  Preprocessors 

allow Snort to examine and manipulate network traffic data 

in several useful ways, such as in IP defragmentation, TCP 

stream assembly, portscan detection, and web-traffic 

normalization.  The preprocessor can maintain state over 

multiple packets to be more intelligent in its processing.  

Then the packets are passed to the detection engine where 

rules examine the processed packet.  Snort's official 

documentation [25] gives details of rule capabilities.  If 

an alert or logging is triggered by the rules, the packet 

is passed to the output preprocessor for appropriate 

processing. 

There are three basic modes of operation in Snort: 

sniffer, packet logger, and NIDS.  Each is well suited for 
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a particular traffic analysis task.  In our experimental 

design we used Snort in network mode, where it was loaded 

with a configuration file (snort.conf) containing run-time 

directives and rules.  Also, a Snort packet can be either 

binary or plain text.  For speed and portability, it is 

best to log to a binary-format file, although we used plain 

text in our experiments.  

 

G. RESPONSE MECHANISMS OR COUNTERMEASURES 

The concept of active response mechanisms or 

countermeasures in an IDS [26] is a form of the idea of 

having the IDS capable of automatic reactions to threats.  

The goal is to prevent further compromise between the 

attacker and the attacked machine.  The following 

techniques can be used: 

• RST emission 

• Firewall update 

• Routing table update 

• Signature-based firewall 

An IDS has two parts, data collection and attack 

response.  Data collection is done by sensors that are 

usually self-contained detection engines, which obtain 

network packets, search for patterns of misuse, and then 

report alarms to a data-analysis central command.  This 

approach does have some problems, however, such as 

difficulty in recognizing denial of service attacks and the 
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creation of race conditions between a packet generated by 

IDS and the packets send by an attacker [27]. 

Automated response to intrusions has become a major 

issue in defending critical systems.  Since the adversary 

acts at computer speeds, systems need the capability to 

react without human intervention.  An infrastructure that 

supports the development of automated response must allow 

easy integration of detection and response components to 

enable experimentation with automated response strategies. 
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III. IDS AND SOFTWARE DECOY ARCHITECTURE 

A goal of our research is to show that the integration 

of a NIDS and a HIDS could facilitate deployment of a 

software decoy.  But when we started our research we were 

not sure how modular NIDSs and HIDSs could be, which is a 

necessity when integrating them with additional complex 

modules for deception.  We discovered one simple interface 

that allowed for considerable modularity was to process log 

files created by the NIDS and HIDS, and make this the input 

to the deception processing.  

 

A. INTRUSION-DETECTION INTEGRATION 

The experimental design contains two types of 

intrusion detection, NIDS (Snort) and HIDS (LIDS).  Another 

module is a log monitor that collects information from 

NIDS, HIDS, and the kernel log file, and then does data 

reduction.  Figure 3 illustrates this.  As discussed in 

Chapter II, good IDSs should provide internal direct data 

collection mechanisms such as those provided by a HIDS.  

Nonetheless, a NIDS with its indirect collection is 

valuable as it can anticipate the attack and the reaction.  

Most attacks start with a probe and scanning and, as seen 

in Table 2, these can only be caught by a NIDS.  

Furthermore, NIDS can see malicious network behavior in a 

variety of forms that a HIDS cannot see.  A HIDS can see a 

portscan, but a NIDS can see the similar attacks on other 

sites that happened first. 
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SNORT LIDS

NIDS AlarmsLog Files HIDS Alarms

DATA
REDUCTION

Log Systems

Log Monitor

 

Figure 3.   Architecture schema 

 

B. IDS AND SOFTWARE DECOY ARCHITECTURE INTEGRATION 

1. How NIDS Can Improve a Software Decoy 

Georgios Fragkos [21] selected an exemplar of attack 

and created a deception for it by using NAI’s Generic 

Software Wrapper Toolkit [22] to do both detection and 

decoying.  But his deception ends when the attacker tries 

to interact with the shell since the shell's functionality 

is not being simulated and the attacker will immediately 

discover that something went wrong.  Since it is thought 
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that professional attacks always will use automatic tools 

as rootkits, this kind of decoy may only be effective for a 

few seconds.  An alternative could be to transfer the 

attacker to a safer machine where everything is simulated, 

such as a honeypot or sandbox, where it would be hard for 

the attacker to tell that  he is being fooled. 

NIDS can anticipate the attack, thus improving the 

performance of the software decoy application.  For 

instance, after NIDS detects a ping it could lie to the 

attacker and send an ICMP (Internet Control Message 

Protocol) message saying “host unreachable”, or the 

software decoy could delay the ping response.  Or NIDS 

could incorrectly inform the attacker as to which ports are 

open and what vulnerabilities they have. 

2. How HIDS Can Improve Software Decoy 

After the attacker has gained some privileges on the 

target machine, data collected from the logs would decrease 

in importance because the network information could no 

longer be trusted.  The attacker could also launch some 

cryptographic channels to communicate with the outside 

world, making the network analysis more difficult.  The 

system developed in our experiments tried to deal with this 

situation by creating one more layer of defense and one 

more chance to fool the attacker, the layer above the root 

discussed in Chapter II (see Figure 4). 
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Root and unprotected world

LIDS protection for software decoy, log files and all important
files - Reference Monitor enforcement

Response Decoy Layer

Seal the kernel

Kernel and
process to be

protected

 

Figure 4.   Inner layers of defense-in-depth 

As seen in Figure 4 above, the root is no logger the 

last level to be attacked to reach the control of the host.  

Even if the attacker gains root privileges, we keep the 

kernel sealed, the process and services untouchable, and 

the decoy programs running.  This design minimizes the 

threat to the target system and provides more time for 

launching decoy capabilities against the enemy, which 

increases the deception factor in Schwartau formula [8]. 

3. Data Reduction 

Few systems have the resources to store all 

information generated by various log files.  In a medium 

network the hard disk could be filled by log file 

information in a few weeks.  If the log systems are 

concentrated in one machine or file, this situation is much 

worse.  Not concentrating all information in one system or 

file is not reasonable either, as this situation  

exacerbates the human incapacity to check thousands of 
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lines of information of many log files to figure out what 

is happening.  To make a realistic analysis of the 

information collected by some log files, the system 

administrator would have to check each line of each log 

files, comparing timestamps of the events generated by the 

all log files or alert files.  

Therefore, the best solution is implementation of a 

log monitor to reduce this ocean of information by, based 

on a security policy, recording only those events necessary 

to detect attack patterns and events that  are suspicious.  

The other advantage is that the log monitor works as an 

interface between the detection and the response.  To do 

this work we used Perl as best explained in Section II-c. 
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IV. EXPERIMENTAL DESIGN IMPLEMENTATION 

We now describe in more detail an implementation of 

intrusion-detection systems to support software decoys.  

The next sections will more thoroughly describe the 

implementation of each module in Table 3. 

 

Modules 
Type Description 

Defense (a) SNORT as NIDS 
(b) LIDS as HIDS 
(c) Kernel Log File 

Log Monitor (d) Perl script 
Decoy 

Mechanisms 
(e) Network decoy 
(f) Host decoy 

Table 3.   Experimental Design Module Implementation 

The modules were implemented for a Linux Red Hat8.0 

platform.  This platform was chosen because the source code 

is available, which facilitates instrumentation of the 

kernel.  This feature is very important for the 

implementation of LIDS (HIDS) as it works as a patch of a 

“pure” Linux kernel, mandatory in the recompilation of the 

kernel.  Another advantage is that the kernel 

instrumentation capacity can facilitate future work as the 

software decoy implementation can also be embedded in the 

operating system kernel. 
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A.  EXPERIMENTS 

As a proof of concept, we tested both a network-based 

attack and a host-based attack in experiments.  Figure 3 

shows what was implemented.  We installed two services in a 

protected host: a Web service (Apache2.0) and a SSH 

service.  The SSH server is part of Red Hat 8.0.  In the 

installation of both services the default configuration was 

used.  The simulated attacks tried to break into the 

protected host to exploit vulnerabilities of a Web and SSH 

service. 

Most attacks are initiated with footprinting, followed 

by probes and scans.  These first steps have the main goal 

of discovering open ports and known vulnerabilities  thus 

finding the best way to break into the target host [32].  

In the first part of an attack the invader bases his action 

on the network environment, so NIDS could better monitor 

the invader's actions.  In the second part of the attack, 

after the invader had obtained some privileges, the kernel 

Log Files and HIDS alerts become essential for attack 

detection and analysis.  

As described in earlier sections, the Perl script 

(Appendix A) reads the alert file generated by Snort, reads 

the log file generated by Linux kernel and reads the log 

file generated by LIDS, writing in a file called decoy.log 

information about the security policy (Table 4), timestamp 

and IP address.  This experiment had the rules shown in 

Table 4 for its security policy. 
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Attacker Detection by Ploy Defense Decoy System Reaction 

PING NIDS HONESTY (a) Log monitor records the action to 
a data reduction file; 

(b) Starts a program to simulate false 
ports; 

(c) Delays the response. 
SCAN NIDS and HIDS LYING (d) Log monitor records the action to 

a data reduction file; 
(e) Responds with false ports as open; 
(f) Changes the configuration of the 

border Cisco router, redirecting 
the attacker to a fake server. 

CONNECT 
(LOGIN) 

NIDS and 
Kernel Log 
File 

LYING (g) Log monitor records the action to 
a data reduction file; 

(h) Launches fake xterm. 
BAD 

ACTIONS 
HIDS LYING (i) Log monitor records the action to 

a data reduction file; 
(j) Reports login. 

Table 4.   Experiment Security Policy 

1. PING 

Following Table 4, we prepared our environment to 

detect any kind of "ping" (attempt to query the status of 

our protected machine).  From an attacker machine 

(192.168.0.1), we started to ping the protected host 

(192.168.0.3).  

• Snort: We wrote a rule to detect any ICMP (Internet 

Control Message Protocol) packet that has a 

destination of the protected host: 

Alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:”ICMP 
Packet to Protected Host”; classtype:bad-unknown;) 

 

To do this, in the snort.conf (see Appendix C) we 

defined $EXTERNAL_NET as any IP number but the 

protected host was assigned IP number 192.168.0.3.  
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The $HOME_NET is the protected host [25].  This rule 

generated the following message at the alert file at 

/var/log/snort directory for each ping: 
02/23-15:16:33.464600 [**] [1:0:0] ICMP Packet [**] 
[Classification: Potentially Bad Traffic] [Priority: 2] {ICMP} 
192.168.0.1 -> 192.168.0.3 

 

• LIDS: Not involved. 

• Kernel Log File: Not involved. 

• Log Monitor: Read the alert file, searching for a 

/PING/ pattern.  After matching the PING string at 

alert file, the Log monitor recorded in decoy.log:  
HONESTY: hacker(192.168.0.1) PING DEST:192.168.0.3 at 02/23 
15:16:33.464600 2003. 

 

2. Scan 

Using Win?Map, a well-known scanner, from 192.168.0.1 

(the attacker machine), we scanned the target protected 

host (192.168.0.3) (see Figure 5). 
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Figure 5.   Win?Map application scanning the 
target machine 

• Snort: The scan is logged by the Snort portscan 

preprocessor [30].  It records an alert in the 

scan.log file and in the alert log file, both in the 
/var/log/snort directory.  Stream4, another 

preprocessor, also logged this activity in the 
/var/log/snort/alert file.  This is the output of that 

file. 

 
02/24-11:27:29.905403  [**] [117:1:1] (spp_portscan2) Portscan 
detected from 192.168.0.1: 1 targets 21 ports in 0 seconds [**] 
{TCP} 192.168.0.1:60517 -> 192.168.0.3:506 
 
02/24-11:27:31.586498  [**] [111:9:1] (spp_stream4) STEALTH 
ACTIVITY (NULL scan) detection [**] {TCP} 192.168.0.1:60525 -> 
192.168.0.3:80 

 

The portscan preprocessor is a powerful and flexible 

scan detector.  It checks for TCP connection attempts to 

more then P ports in T seconds, and UDP packets sent to 

more than P ports in T seconds [25], where P and T are 
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given in the snort.conf file.  This portscan can also 

detect a single “stealth scan” packet as in NUL, FIN, 

SYNFIN, and XMAS scans.  Another benefit of portscan is 

that alerts only showed once per scan, rather than once per 

packet, which reduces the amount of redundant information  

in the alert file. 

The stream4 preprocessor provides TCP stream 

reassembly and stateful analysis capabilities for Snort.  

Stream4 also gives users the ability to track more than 256 

simultaneous TCP streams.  Stream4 should be able to scale 

to handle 32,768 simultaneous TCP connections in its 

default configuration. 

• LIDS: LIDS can also detect port scans when its 

optional port scan detector is enabled.  Here is an 

example from its message log file. 
Feb 24 11:19:39 LIDS kernel: LIDS: (undetermined program) pid 0 
ppid 0 uid/gid (0/0) on (null tty): Port scan detected: 
192.168.0.1 scanned 1153 closed ports including 575 ports < 1024)  

   

• Kernel Log File: Not involved. 

• Log Monitor: Read the alert file generated by 

Snort, searching for /spp_portscan2/ or /spp_stream4/ 

patterns.  After matching one of these patterns at 
alert file, the log monitor recorded in the decoy.log 

file: 

 

 

The Log monitor also read the kernel message log file 

generated by LIDS and generated the following record in 
decoy.log file: 

LYING: hacker(192.168.0.1) SCAN DEST:192.168.0.3 at 02/24-
11:27:29.905403 2003. 
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3. Connect 

In our scenario, see Table 4, after a ping and a scan 

the attacker tries using the PuTTY application (Figure 6) 

to connect to the target machine at port 22 (ssh). 

 

Figure 6.   SSH connection from attacker 
machine 

After that, for experimental purposes only, the 

attacker logs in as root (Figure 7), simulating that the 

root password was previously known. 

 

Figure 7.   Attacker login 

LYING: hacker(192.168.0.1) SCAN DEST:192.168.0.3 at Feb 24 
11:19:39 2003. 
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• Snort: Snort was configured to detect any attempt 

to telnet or to connect using the protocol SSH against 

the protected host.  These are the rules: 
alert tcp $EXTERNAL_NET any -> $TELNET_SERVERS 23 (msg:"TELNET 
attempt"; flow:to_server,established; classtype:shellcode-detect; 
sid:1430; rev:5;) 
 
alert tcp $EXTERNAL_NET any -> $SSH_SERVERS 22 (msg:"SSH 
attempt"; flags:S+; classtype:suspicious-login; sid:1431; rev:5;) 

  

These rule configurations use the variable 

$EXTERNAL_NET defined in snort.conf as being any host but 

the protected host (192.168.0.3).  Both TELNET_SERVER and 

SSH_SERVER are defined as being the protected target host, 

192.168.0.3. 

Due to the encrypted nature of a SSH connection, 

detecting such an attacker's attempt to scale privileges is 

impossible.  But we can detect whether encrypted traffic 

was employed to communicate with the protected host.  The 

following message was logged in the alert file at 
/var/log/snort directory: 

02/24-22:47:10.107040  [**] [1:1431:5] SSH attempt [**] 
[Classification: An attempted login using a suspicious username 
was detected] [Priority: 2] {TCP} 192.168.0.1:1884 -> 
192.168.0.3:22 

 

• LIDS: As a SSH is a service available by the 

protected server, LIDS is not involved. 

• Kernel Log File: A message to record the SSH 

connection was recorded in the kernel log file: 
Feb 24 21:23:01 LIDS sshd(pam_unix)[684]: session opened for user 
root by (uid=0) 
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This is misleading because we called the target 

machine LIDS.  The log message above was recorded by the 

kernel and not by the HIDS called LIDS. 

 

• Log Monitor: Read the alert file, searching for 

an attempt to CONNECT record.  After matching the SSH 

connection recorded by Snort, the log monitor was 
recorded in decoy.log file: 
LYING: hacker(192.168.0.1) CONNECT SSH DEST:192.168.0.3 at Sat 
Feb 21 15:16:33 2003. 

 

The log monitor also read the kernel message log file 

generated by the kernel log and generated the following 
record in decoy.log file: 

 

 

4. Other Suspicious Actions at Target Machine 

Using the PuTTY application, we logged on to the 

target machine and tried to execute some forbidden actions 

such as copying files, decompressing files, and killing 

processes (Figure 8).  The rules for this are defined in 

Appendix B. 

LYING: hacker(192.168.0.1) CONNECT SSH DEST:192.168.0.3 at Feb 21 
15:16:33 2003. 
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Figure 8.   Process running at protected 
machine 

In Figure 8, we have some process running on the 

server as httpd (PID 1923) and sshd (PID 1929).  The 

attacker will try to delete a file and copy a file from one 

directory to another; after that the intruder will try to 

kill some process. 

• Snort: Not involved. 

• LIDS: This blocked all of the attacks that the 

attacker tried to invoke against the target machine.  

The LIDS configuration needed to accomplish this and 

allow ssh and the HTTP Server to keep running are 

described in Appendix B.  Following is the output of 

the message log file logged by LIDS when the attacker 
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tried to remove and copy a file (Figure 9) to the 

protected system. 
Feb 24 23:47:16 LIDS kernel: LIDS: rmdir (dev 3:2 inode 840392) 
pid 2031 ppid 1995 uid/gid (0/0) on (pts) : Attempt to rmdir 
apache_pb2.gif  
 
Feb 24 23:48:00 LIDS kernel: LIDS: cp (dev 3:2 inode 840382) pid 
2032 ppid 1995 uid/gid (0/0) on (pts) : Attempt to open 
index.html for writing,flag=32834 

 

After that, the attacker tried to kill the 

process httpd.  Figure 9 shows the moment that the 

attacker attempted to check if there was a root 

privilege; the attacker ultimately realized that the 

commands, even with root privilege, would not work 

since the process was still running. 

 

 

Figure 9.   Attacker deleting and copying 
files 

Next we show what happened when the attacker 

attempted to terminate process 1929 that was protected 

by the system (Figure 10). 
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Figure 10.   Attacker trying to kill httpd 
process 

Here is the output of message log file. 
Feb 24 23:58:20 LIDS kernel: LIDS: bash (dev 3:2 inode 840369) 
pid 1995 ppid 1994 uid/gid (0/0) on (pts) :  violated CAP_KILL  
 
Feb 24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369) 
pid 1995 ppid 1994 uid/gid (0/0) on (pts) :  violated 
CAP_KILL_PROTECTED  - logging disabled for (60)s 
 
Feb 24 23:58:38 LIDS kernel: LIDS: bash (dev 3:2 inode 840369) 
pid 1995 ppid 1994 uid/gid (0/0) on (pts) : Attempt to kill 
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pid 1995 ppid 1994 uid/gid (0/0) on (pts) : Attempt to kill 
pid=1929 with sig=15 

 

• Kernel Log File: Does not make any kind of 

record, as the commands are not executed. 

• Log Monitor: Read the alert file generated by 

LIDS, searching for patterns that indicate a violation 

of rules, such as attempting to remove file (/rmdir/), 

to copy file (/cp/) and kill process 

(/CAP_KILL_VIOLATION/).  After matching the patterns, 

the log monitor is recorded in decoy.log: 
LYING: hacker(192.168.0.1) ATTEMPT to RMDIR at Feb 24 23:48:00 
2003. 
LYING: hacker(192.168.0.1) ATTEMPT to COPY a FILE at Feb 24 
23:48:00 
LYING: hacker(192.168.0.1) ATTEMPT to KILL PROCESS 1929 at Feb 24 
23:58:38 2003. 
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V. DISCUSSION 

Military history suggests it is best to employ a 

layered, defense-in-depth strategy that includes 

protection, monitoring, and response [28].  Also, deception 

should be integrated with operations [29].  This is the 

strongest point of the architecture developed in the 

experimental design, which has its structure based on 

defense-in-depth.  We showed that an intrusion-detection 

system can improve decoy capabilities if the two are 

integrated together .  The detection system cannot be a job 

of only one machine or technology.  Both of these 

capabilities have to be spread around the defensive 

structure. 

As we do not have, at the present date, a defined 

decoy policy, we created one (Table 4) based on some 

experience in the security and network field.  With this 

simple and real example, we demonstrated simple detection 

and response capabilities.  In our experiments, different 

phases of a simulated attack (PING, SCAN, CONNECTION and 

BAD ACTIONS), used different kinds of detection 

technologies that can be associated with different kinds of 

deception. 

In particular, with this architecture and 

implementation: a log monitor that reads and analyzes all 

detection alarms and then launches deception capabilities, 

we have a better coordination between an intrusion-

detection system and a software decoy.  This integration 

between defense modules and the log monitor is very 
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important since we can launch different decoys for 

different situations based on information about the whole 

arena.  This significantly improves the performance of 

software decoy applications. 
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VI. CONCLUSIONS 

Some concepts of this work, such as defense-in-depth, 

centralized coordination, surveillance, event registry, and 

deception, have been widely used by military forces around 

the world for thousands of years.  In the "information age" 

these tactics and strategies of military forces are 

migrating to the digital world.  This makes sense because 

the digital world also encompasses; enemies, attacks, 

networks to be defended, defense planning to be performed, 

countermeasures to be executed, information warfare to be 

deployed, technology to be developed, and deceptions to 

fool the enemy. 

Our experiments in this thesis demonstrated the 

advantages of intrusion-detection software as a component 

in defense of computer systems, much as any military 

defense plan should be based on battlefield intelligence 

information.  But intrusion information can be voluminous 

and needs to be collected and fused by a central "brain" as 

we described in this research.  In the proposed 

architecture, network intrusion detection, host intrusion 

detection and log files acted as our defense modules.  

Their integration with a log monitor became vital for the 

implementation of decoy capabilities. 

This approach is not new and was first proposed in 

1980 [30].  Since then a log analysis has been one of the 

most overlooked aspects of operational computer security.  

Many organizations spend hundreds of thousands of dollars 

on intrusion-detection systems (IDS) deployments, but still 
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ignore their firewall logs.  Bird [31] suggests that the 

next wave in security will be to usefully correlate and 

process the contents of multiple logs and intrusion-

detection technology in real time. 

 

A. POSSIBLE FUTURE WORK 

More tests and experiments are necessary to best 

address some issues not covered in this research: 

• Synchronization of all modules with timestamps would 

be useful as the timing of events is a very 

important issue in this kind of approach. 

• Encrypted communication between defense modules and 

the coordination module could help conceal 

deceptions. 

• Redundancy of all data stored in the coordination 

module could increase robustness. 

• Defense modules could be created with a high level 

of specialization.  The rules and policy could be 

customized for each environment and each defense 

module. 

• Integration of the intrusion-detection system with 

other defense technology using the Intruder 

Detection and Isolation Protocol (IDIP) could 

provide additional resources to facilitate 

implementation. 
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VII. APPENDIXES 

APPENDIX A – LOG MONITOR PROGRAM 

#!/usr/bin/perl 
 
#################################### 
# Load Configuration 
#################################### 
$decoy_file = "./decoy.log"; 
$ping_file = "/var/log/snort/alert"; 
$scan_file = "/var/log/snort/alert"; 
$connect_file = "/var/log/snort/alert"; 
$login_root_file = "/var/log/messagens"; 
 
############################################################################### 
open(PING, $ping_file) or die "can't open PING file: $ping_file: $!\n"; 
print "Checking $ping_file ...\n"; 
while(<PING>) { 
   next unless /ICMP Packet | Portscan detected | TELNET attempt /; 
   if ("$&" == "ICMP Packet") { 
      my $status = "PING"; 
      if (/.* (\d+\.\d+\.\d+\.\d+) -> (\d+\.\d+\.\d+\.\d+)/) { 
      &check_IP_Table($1, $2, $status); 
      }#end if 
   }#end if 
   if ("$&" == "Portscan detected") { 
      my $status = "SCAN"; 
      if (/.* (\d+\.\d+\.\d+\.\d+):\d+ -> (\d+\.\d+\.\d+\.\d+):\d+/) { 
      &check_IP_Table($1, $2, $status); 
      } 
   }#end if 
   if ("$&" == "TELNET attempt") { 
      my $status = "CONNECT"; 
      if (/.* (\d+\.\d+\.\d+\.\d+):\d+ -> (\d+\.\d+\.\d+\.\d+)/) { 
      &check_IP_Table($1, $2, $status); 
      }#end if 
   }#end if 
}#end while 
 
############################################################################### 
open (LOG, "/var/log/messages") or die "Can't open /var/log/messagens\n"; 
print "\nChecking $login_root_file..\n"; 
while (<LOG>) { 
   next unless /session opened/; 
   my $status = "LOGIN"; 
   #$total_good_su++; 
   if (/session opened for user (\w) by/) { 
      &check_IP_Table($1, undef, $status); 
   }#end if 
}#end while 
 
 
############################################################################### 
#Area for Sub Rotines 
############################################################################### 
 
sub write_decoy_file { 
   my $message = $_[0]; 
   print STDOUT $message; 
   open (DECOY, ">>$decoy_file"); 
   print DECOY $message; 
   close (DECOY); 
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}# end of write_decoy_file 
 
sub check_IP_Table { 
   my ($source, $dest, $status) = @_; 
   $key_hash = "$source.$status"; 
   if ($hash{$key_hash}) { 
      $hash{$key_hash}++; 
   print "\tIP $source has $hash{$key_hash} attempts\n"; 
   }#end if 
   else { 
      print "\tNew Hacker Activity: IP number: $source,$status\n"; 
   &check_hacker($source, $dest, $status); 
   }#end elsif 
}#end check_IP_Table 
 
sub check_hacker { 
   my ($source, $dest, $status) = @_; 
#   my $date = localtime(); 
   if ($status eq "PING") { 
      &write_decoy_file("\t\tHONESTY: "); 
   &write_decoy_file("hacker($source) $status DEST:$dest\n"); 
   }#end if 
   if ($status eq "SCAN") { 
      &write_decoy_file("\t\tLYING: "); 
   &write_decoy_file("hacker($source) $status DESt:$dest\n"); 
   &write_decoy_file("\t\tRedirecting to FAKE SERVER...\n"); 
   }#end if 
   if ($status eq "CONNECT") { 
      &write_decoy_file("\t\tLYING: "); 
   &write_decoy_file("$hacker($source) $status DEST:$dest\n"); 
   }#end if 
   if ($status eq "LOGIN") { 
      &write_decoy_file("\t\tLYING: "); 
   &write_decoy_file("$hacker($source) $status DEST:$dest\n"); 
   }#end if    
}#end check_hacker 
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APPENDIX B – LIDS AND INSTALLATION 

This appendix provides guidelines to implement LIDS in 

the LINUX system.  This guide is based on the documentation 

available in the LIDS official home page [42], along with 

some of our own updates. 

Before installing LIDS in the machine, you must 

download the "pure" kernel developed by Linux (or did you 

mean Linus Torvalds?); LIDS is a patch of the kernel.  Many 

distributors, including Red Hat, customize their kernel.  

Although this is not a problem, LIDS only runs over Linux 

pure kernel.  There are many documents and books about 

Linux Kernel compilation [41].  
 

1. System Environment 

  
Operating System LINUX RedHat 8 
Kernel 2.4.18 
LIDS version lids-1.1.1r2-2.4.18 
Unpacked LIDS directory /usr/src/lids-1.1.1r2-2.4.18 
Configuration directory /etc/lids 

Lids.conf LIDS ACL configuration file 
Lids.cap LIDS capabilities file 
Lids.pw LIDS password file 

Configuration Files 

Lids.net Lids mail alert configuration file 
  
 

2. Installation 

Before installing LIDS, the kernel must be patched.  

To do this, download the LIDS patch [42] that matches the 

specific kernel, which for this research, was lids-1.1.1r2-

2.4.18.  After that follow the steps: 
Step Commands Comments 
01 cd /usr/src/linux This is the directory that you unpacked the original 

Linux kernel. 
02 patch –p1 < 

/usr/src/lids-1.1.1r2-
2.4.18.patch 

Patch the Linux kernel 
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2.4.18.patch 
03 make clean Recompile the Linux kernel 
04 make xconfig Open Linux kernel menu. Make sure that the following 

options are enabled: 
[*] Prompt for development and/or incomplete 
code/drives 
[*] Sysctl support 
In the LIDS option in the kernel, make sure that the 
following options are enabled: 
[*] Linux Intrusion-detection System support 
[*] Attempt not to flood logs 
[*] Allow switching LIDS protection 
[*] Allow reloading config. File 
[*] Port scanner detector in kernel 
[*] Send security alerts through network 
 

05 make dep clean bzImage Complete the kernel recompilation 
06 lilo Do not forget to configure lilo for this new patched 

kernel 
07 cd /usr/src/lids-

1.1.1r2-2.4.18 
Go to lids directory and install lidsadm an lidsconf 
with ./configure && make && make install 

08 cp /usr/src/lids-
1.1.1r2-
2.4.18/example/lids.* 
/etc/lids 

This will create the files in order to reboot the 
machine. To the system work properly we have to 
change this file according to our system 
configuration and security police 

09 lidsconf –P Generate the password file lids.pwd 
10 reboot  Reboot the machine 
11 There are some important commands to deal with LIDS implementation and debug: 
 lidsadm –S -- -

LIDS_GLOBAL 
Disable LIDS completely 

 lidsadm –S -- 
+LIDS_GLOBAL 

Enable LIDS completely 

 lidsadm –V This will produce output that show all LIDS options 
12 In the official reference there are some old commands that use lidsadm 

instead of lidsconf. Use the both commands lidsadm –help and lidsconf –help 
to make sure about the right command. 

 

3. LIDS Files Configurations 

• Lids.cap file: 
### 0: In a system with the _POSIX_CHOWN_RESTRICTED option defined, this overrides the 
restriction 
### 0: of changing file ownership and group ownership.  
# 
+0:CAP_CHOWN 
 
### 1: Override all DAC access, including ACL execute access if _POSIX_ACL is defined. 
Excluding 
### 1: DAC access covered by CAP_LINUX_IMMUTABLE.  
# 
+1:CAP_DAC_OVERRIDE 
 
### 2: Overrides all DAC restrictions regarding read and search on files and directories, 
including 
### 2: ACL restrictions if _POSIX_ACL is defined. Excluding DAC access covered by 
### 2: CAP_LINUX_IMMUTABLE.  
# 
+2:CAP_DAC_READ_SEARCH 
 
### 3: Overrides all restrictions about allowed operations on files, where file owner ID 
must be equal 
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must be equal 
### 3: to the user ID, except where CAP_FSETID is applicable. It doesn't override MAC and 
DAC 
### 3: restrictions.  
# 
+3:CAP_FOWNER 
 
### 4: Overrides the following restrictions that the effective user ID shall match the 
file owner ID 
### 4: when setting the S_ISUID and S_ISGID bits on that file; that the effective group 
ID (or one of 
### 4: the supplementary group IDs) shall match the file owner ID when setting the 
S_ISGID bit on 
### 4: that file; that the S_ISUID and S_ISGID bits are cleared on successful return from 
chown(2) 
### 4: (not implemented).  
# 
+4:CAP_FSETID 
 
### 5: Overrides the restriction that the real or effective user ID of a process sending 
a signal must 
### 5: match the real or effective user ID of the process receiving the signal.  
# 
-5:CAP_KILL 
 
### 6: - Allows setgid(2) manipulation  
### 6: - Allows setgroups(2)  
### 6: - Allows forged gids on socket credentials passing.  
#  
+6:CAP_SETGID 
 
### 7: - Allows set*uid(2) manipulation (including fsuid).  
### 7: - Allows forged pids on socket credentials passing.  
# 
+7:CAP_SETUID 
 
### 8: Transfer any capability in your permitted set to any pid, remove any capability in 
your 
### 8: permitted set from any pid.  
# 
+8:CAP_SETPCAP 
 
### 9: Allow modification of S_IMMUTABLE and S_APPEND file attributes.  
#  
-9:CAP_LINUX_IMMUTABLE 
 
### 10: Allows binding to TCP/UDP sockets below 1024.  
#  
-10:CAP_NET_BIND_SERVICE 
 
### 11: Allow broadcasting, listen to multicast. 
#   
+11:CAP_NET_BROADCAST 
 
### 12: - Allow interface configuration  
### 12: - Allow administration of IP firewall, masquerading and accounting  
### 12: - Allow setting debug option on sockets  
### 12: - Allow modification of routing tables  
### 12: - Allow setting arbitrary process / process group ownership on sockets  
### 12: - Allow binding to any address for transparent proxying  
### 12: - Allow setting TOS (type of service)  
### 12: - Allow setting promiscuous mode  
### 12: - Allow clearing driver statistics  
### 12: - Allow multicasting  
### 12: - Allow read/write of device-specific registers  
# 
-12:CAP_NET_ADMIN 
 
### 13: - Allow use of RAW sockets  
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### 13: - Allow use of PACKET sockets  
# 
-13:CAP_NET_RAW 
 
### 14: - Allow locking of shared memory segments  
### 14: - Allow mlock and mlockall (which doesn't really have anything to do with IPC) 
# 
+14:CAP_IPC_LOCK 
 
### 15: Override IPC ownership checks.  
# 
+15:CAP_IPC_OWNER 
 
### 16: Insert and remove kernel modules.  
# 
-16:CAP_SYS_MODULE 
 
### 17: - Allow ioperm/iopl and /dev/port access  
### 17: - Allow /dev/mem and /dev/kmem acess  
### 17: - Allow raw block devices (/dev/[sh]d??) acess  
# 
-17:CAP_SYS_RAWIO 
 
### 18: Allow use of chroot()  
# 
+18:CAP_SYS_CHROOT 
 
### 19: Allow ptrace() of any process  
# 
-19:CAP_SYS_PTRACE 
 
### 20: Allow configuration of process accounting  
# 
+20:CAP_SYS_PACCT 
 
### 21:  
 
### 21: - Allow configuration of the secure attention key  
### 21: - Allow administration of the random device  
### 21: - Allow device administration (mknod)  
### 21: - Allow examination and configuration of disk quotas  
### 21: - Allow configuring the kernel's syslog (printk behaviour)  
### 21: - Allow setting the domainname  
### 21: - Allow setting the hostname  
### 21: - Allow calling bdflush()  
### 21: - Allow mount() and umount(), setting up new smb connection  
### 21: - Allow some autofs root ioctls  
### 21: - Allow nfsservctl  
### 21: - Allow VM86_REQUEST_IRQ  
### 21: - Allow to read/write pci config on alpha  
### 21: - Allow irix_prctl on mips (setstacksize)  
### 21: - Allow flushing all cache on m68k (sys_cacheflush)  
### 21: - Allow removing semaphores  
### 21: - Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores and shared 
memory  
### 21: - Allow locking/unlocking of shared memory segment  
### 21: - Allow turning swap on/off  
### 21: - Allow forged pids on socket credentials passing  
### 21: - Allow setting readahead and flushing buffers on block devices  
### 21: - Allow setting geometry in floppy driver  
### 21: - Allow turning DMA on/off in xd driver  
### 21: - Allow administration of md devices (mostly the above, but some extra ioctls) 
### 21: - Allow tuning the ide driver  
### 21: - Allow access to the nvram device  
### 21: - Allow administration of apm_bios, serial and bttv (TV) device  
### 21: - Allow manufacturer commands in isdn CAPI support driver  
### 21: - Allow reading non-standardized portions of pci configuration space  
### 21: - Allow DDI debug ioctl on sbpcd driver  
### 21: - Allow setting up serial ports  
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### 21: - Allow sending raw qic-117 commands  
### 21: - Allow enabling/disabling tagged queuing on SCSI controllers and sending 
arbitrary SCSI commands  
### 21: - Allow setting encryption key on loopback filesystem  
#  
-21:CAP_SYS_ADMIN 
 
### 22: Allow use of reboot() 
# 
+22:CAP_SYS_BOOT 
 
### 23: - Allow raising priority and setting priority on other (different UID) processes 
### 23: - Allow use of FIFO and round-robin (realtime) scheduling on own processes and 
setting 
### 23:   the scheduling algorithm used by another process.  
# 
+23:CAP_SYS_NICE 
 
Override resource limits. Set resource limits.  
### 24: - Override quota limits.  
### 24: - Override reserved space on ext2 filesystem  
### 24:   NOTE: ext2 honors fsuid when checking for resource overrides, so you can 
override 
### 24:   using fsuid too  
### 24: - Override size restrictions on IPC message queues  
### 24: - Allow more than 64hz interrupts from the real-time clock  
### 24: - Override max number of consoles on console allocation  
### 24: - Override max number of keymaps  
# 
+24:CAP_SYS_RESOURCE 
 
### 25: - Allow manipulation of system clock  
### 25: - Allow irix_stime on mips  
### 25: - Allow setting the real-time clock  
# 
-25:CAP_SYS_TIME 
 
### 26: - Allow configuration of tty devices  
### 26: - Allow vhangup() of tty  
# 
+26:CAP_SYS_TTY_CONFIG 
 
### 27: Allow the privileged aspects of mknod()  
### 
+27:CAP_MKNOD 
 
### 28:Allow taking of leases on files */ 
### 
+28:CAP_LEASE 
 
 
### 29: Restricts viewable processes by a user.  
# 
+29:CAP_HIDDEN 
 
### 30: Allow to kill protected processes 
# 
-30:CAP_KILL_PROTECTED 
 
### 31: Protect process against signals  
# 
+31:CAP_PROTECTED 
 
 

• Lids.conf file configuration 
# 
#  This file is auto generated by lidsconf  
# Please do not modify this file by hand 
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# 
0:0::1:0:791855:770:/sbin:0-0 
0:0::1:0:840334:770:/bin:0-0 
0:0::1:0:2:769:/boot:0-0 
0:0::1:0:921136:770:/lib:0-0 
0:0::1:0:323201:770:/usr:0-0 
0:0::1:0:226241:770:/etc:0-0 
0:0::0:0:745099:770:/etc/lids:0-0 
0:0::3:0:743370:770:/var/log:0-0 
0:0::7:0:745391:770:/var/log/wtmp:0-0 
840445:770:/bin/login:7:0:743373:770:/var/log/lastlog:0-0 
695028:770:/etc/rc.d/rc:16:-1:-1:30:CAP_KILL_PROTECTED:0-0 
695028:770:/etc/rc.d/rc:16:-1:-1:12:CAP_NET_ADMIN:0-0 
695028:770:/etc/rc.d/rc:16:-1:-1:21:CAP_SYS_ADMIN:0-0 
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:30:CAP_KILL_PROTECTED:0-0 
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:21:CAP_SYS_ADMIN:0-0 
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:17:CAP_SYS_RAWIO:0-0 
840422:770:/etc/rc.d/init.d/halt:16:-1:-1:12:CAP_NET_ADMIN:0-0 
0:0::1:0:290881:770:/root:0-0 
387985:770:/usr/sbin/sshd:16:0:22-22:10:CAP_NET_BIND_SERVICE:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:31:CAP_PROTECTED:0-0 
145448:770:/usr/X11R6/bin/XF86_SVGA:16:0:-1:17:CAP_SYS_RAWIO:0-0 
340048:770:/usr/bin/ssh:16:0:0-1024:10:CAP_NET_BIND_SERVICE:0-0 
0:0::1:0:791855:770:/sbin:0-0 
0:0::1:0:840338:770:/usr/local:0-0 
0:0::1:0:743375:770:/opt:0-0 
0:0::1:0:921138:770:/usr/local/etc:0-0 
0:0::0:0:227208:770:/etc/shadow:0-0 
0:0::0:0:227644:770:/etc/lilo.conf:0-0 
840445:770:/bin/login:1:0:227208:770:/etc/shadow:0-0 
840414:770:/bin/su:1:0:227208:770:/etc/shadow:0-0 
840414:770:/bin/su:16:0:-1:7:CAP_SETUID:0-0 
840414:770:/bin/su:16:0:-1:6:CAP_SETGID:0-0 
840369:770:/bin/bash:7:0:293155:770:/root/.bash_history:0-0 
840445:770:/bin/login:7:0:745391:770:/var/log/wtmp:0-0 
791916:770:/sbin/init:7:0:745391:770:/var/log/wtmp:0-0 
791916:770:/sbin/init:7:0:743373:770:/var/log/lastlog:0-0 
791915:770:/sbin/halt:7:0:743373:770:/var/log/lastlog:0-0 
791915:770:/sbin/halt:7:0:745391:770:/var/log/wtmp:0-0 
695030:770:/etc/rc.d/rc.sysinit:7:1:745391:770:/var/log/wtmp:0-0 
695030:770:/etc/rc.d/rc.sysinit:7:1:743373:770:/var/log/lastlog:0-0 
791945:770:/sbin/hwclock:7:0:226410:770:/etc/adjtime:0-0 
791916:770:/sbin/init:16:0:-1:5:CAP_KILL:0-0 
840422:770:/etc/rc.d/init.d/halt:16:1:-1:5:CAP_KILL:0-0 
791863:770:/sbin/update:16:0:-1:21:CAP_SYS_ADMIN:0-0 
0:0::0:0:599268:770:/var/www:0-0 
0:0::0:0:339533:770:/usr/bin/consolehelper:0-0 
0:0::0:0:226493:770:/etc/ssh/sshd_config:0-0 
0:0::0:0:227197:770:/etc/ssh/ssh_host_key:0-0 
0:0::0:0:227214:770:/etc/ssh/ssh_host_dsa_key:0-0 
387985:770:/usr/sbin/sshd:1:0:226493:770:/etc/ssh/sshd_config:0-0 
387985:770:/usr/sbin/sshd:1:0:227197:770:/etc/ssh/ssh_host_key:0-0 
387985:770:/usr/sbin/sshd:1:0:227214:770:/etc/ssh/ssh_host_dsa_key:0-0 
387985:770:/usr/sbin/sshd:7:0:745391:770:/var/log/wtmp:0-0 
387985:770:/usr/sbin/sshd:7:0:743373:770:/var/log/lastlog:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:7:CAP_SETUID:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:6:CAP_SETGID:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:3:CAP_FOWNER:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:0:CAP_CHOWN:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:1:CAP_DAC_OVERRIDE:0-0 
387985:770:/usr/sbin/sshd:16:0:22-22:10:CAP_NET_BIND_SERVICE:0-0 
387985:770:/usr/sbin/sshd:16:0:-1:18:CAP_SYS_CHROOT:0-0 
387985:770:/usr/sbin/sshd:1:0:227208:770:/etc/shadow:0-0 
857457:770:/usr/local/bin/snort:16:0:-1:1:CAP_DAC_OVERRIDE:0-0 
857457:770:/usr/local/bin/snort:16:0:-1:13:CAP_NET_RAW:0-0 
857457:770:/usr/local/bin/snort:16:0:-1:29:CAP_HIDDEN:0-0 
857457:770:/usr/local/bin/snort:16:0:-1:7:CAP_SETUID:0-0 
857457:770:/usr/local/bin/snort:16:0:-1:6:CAP_SETGID:0-0 
857457:770:/usr/local/bin/snort:7:0:81730:770:/var/log/snort:0-0 
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• Lids.net file configuration 

# LIDS  
# Send Alert Message From Network 
# for lids 0.9.8  
#  xie@gnuchina.org 
# ------------------------------------------------------------------- 
 
# MAIL_SWITCH = 1 | 0  
# 1 , send alert function is on  
# 0, send alert function is off  
 
MAIL_SWITCH= 0 
 
# MAIL_RELAY=hex IP:port  
# IP11.1 of the machine that will be directly connected by LIDS 
# for relaying its mails. Port is usually 25, but who knows... 
MAIL_RELAY=127.0.0.1:25  
 
# MAIL_SOURCE=source machine : 
# Name of the source machine, used for the ehlo identification. 
# Note that a bad name here could make the mail relay refuse your 
# mails. 
MAIL_SOURCE=decoy.cs.nps.navy.mil 
           
# MAIL_FROM=sender address  
#          Sender address, which will also be in the ``from'' field. 
MAIL_FROM= LIDS_ALERT@nps.navy.mil 
 
# MAIL_TO=recipient address : 
#          Recipient address. 
MAIL_TO= vjmontei@nps.navy.mil 
         
# MAIL_SUBJECT= subject : 
#          Subject of the mail. 
MAIL_SUBJECT= LIDS ALert 
 

• Lids.pw password file 
8fee5733a4caef5b1992e25508e0428740f99be7 
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APPENDIX C – SNORT FILE CONFIGURATION 

 
# Modified by Valter Monteiro - Thesis Research 
#-------------------------------------------------- 
#   http://www.snort.org     Snort 1.9.0 Ruleset 
#     Contact: snort-sigs@lists.sourceforge.net 
#-------------------------------------------------- 
# NOTE:This ruleset only works for 1.9.0 and later 
#-------------------------------------------------- 
# $Id: snort.conf,v 1.110 2002/08/14 03:17:58 chrisgreen Exp $ 
# 
################################################### 
# This file contains a sample snort configuration. 
# You can take the following steps to create your 
# own custom configuration: 
# 
#  1) Set the network variables for your network 
#  2) Configure preprocessors 
#  3) Configure output plugins 
#  4) Customize your rule set 
# 
################################################### 
# Step #1: Set the network variables: 
# 
# You must change the following variables to reflect 
# your local network. The variable is currently 
# setup for an RFC 1918 address space. 
# 
# You can specify it explicitly as: 
# 
# var HOME_NET 192.160.0.0/24 
# 
# or use global variable $<interfacename>_ADDRESS 
# which will be always initialized to IP address and 
# netmask of the network interface which you run 
# snort at. 
# 
# var HOME_NET $eth0_ADDRESS 
# 
# You can specify lists of IP addresses for HOME_NET 
# by separating the IPs with commas like this: 
# 
# var HOME_NET [10.1.1.0/24,192.168.1.0/24] 
# 
# MAKE SURE YOU DON'T PLACE ANY SPACES IN YOUR LIST! 
# 
# or you can specify the variable to be any IP address 
# like this: 
 
var HOME_NET 192.168.0.3/24 
 
# Set up the external network addresses as well. 
# A good start may be "any" 
 
var EXTERNAL_NET any 
 
# Configure your server lists.  This allows snort to only look for attacks 
# to systems that have a service up.  Why look for HTTP attacks if you are 
# not running a web server?  This allows quick filtering based on IP addresses 
# These configurations MUST follow the same configuration scheme as defined 
# above for $HOME_NET. 
 
# List of DNS servers on your network 
var DNS_SERVERS $HOME_NET 
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# List of SMTP servers on your network 
var SMTP_SERVERS $HOME_NET 
 
# List of web servers on your network 
var HTTP_SERVERS $HOME_NET 
 
# List of sql servers on your network 
var SQL_SERVERS $HOME_NET 
 
# List of telnet servers on your network 
var TELNET_SERVERS $HOME_NET 
 
# Configure your service ports.  This allows snort to look for attacks 
# destined to a specific application only on the ports that application 
# runs on.  For example, if you run a web server on port 8081, set your 
# HTTP_PORTS variable like this: 
# 
# var HTTP_PORTS 8081 
# 
# Port lists must either be continuous [eg 80:8080], or a single port [eg 80]. 
# We will adding support for a real list of ports in the future. 
 
# Ports you run web servers on 
var HTTP_PORTS 80 
 
# Ports you want to look for SHELLCODE on. 
var SHELLCODE_PORTS !80 
 
# Ports you do oracle attacks on 
var ORACLE_PORTS 1521 
 
# other variables 
# 
# AIM servers.  AOL has a habit of adding new AIM servers, so instead of  
# modifying the signatures when they do, we add them to this list of  
# servers. 
var AIM_SERVERS 
[64.12.24.0/24,64.12.25.0/24,64.12.26.14/24,64.12.28.0/24,64.12.29.0/24,64.12.161.0/24,64.12.163.0/24,205.188.5.0/24,205.188.9.0/24]
 
# Path to your rules files (this can be a relative path) 
var RULE_PATH ../rules 
 
################################################### 
# Step #2: Configure preprocessors 
# 
# General configuration for preprocessors is of  
# the form 
# preprocessor <name_of_processor>: <configuration_options> 
 
# frag2: IP defragmentation support 
# ------------------------------- 
# This preprocessor performs IP defragmentation.  This plugin will also detect 
# people launching fragmentation attacks (usually DoS) against hosts.  No 
# arguments loads the default configuration of the preprocessor, which is a  
# 60 second timeout and a 4MB fragment buffer.  
 
# The following (comma delimited) options are available for frag2 
#    timeout [seconds] - sets the number of [seconds] than an unfinished  
#                        fragment will be kept around waiting for completion, 
#                        if this time expires the fragment will be flushed 
#    memcap [bytes] - limit frag2 memory usage to [number] bytes 
#                      (default:  4194304) 
# 
#    min_ttl [number] - minimum ttl to accept 
#  
#    ttl_limit [number] - difference of ttl to accept without alerting 
#                         will cause false positves with router flap 
#  
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# Frag2 uses Generator ID 113 and uses the following SIDS  
# for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Oversized fragment (reassembled frag > 64k bytes) 
#   2       Teardrop-type attack 
 
preprocessor frag2 
 
# stream4: stateful inspection/stream reassembly for Snort 
#---------------------------------------------------------------------- 
# Use in concert with the -z [all|est] command line switch to defeat  
# stick/snot against TCP rules.  Also performs full TCP stream  
# reassembly, stateful inspection of TCP streams, etc.  Can statefully 
# detect various portscan types, fingerprinting, ECN, etc. 
 
# stateful inspection directive 
# no arguments loads the defaults (timeout 30, memcap 8388608) 
# options (options are comma delimited): 
#   detect_scans - stream4 will detect stealth portscans and generate alerts 
#                  when it sees them when this option is set 
#   detect_state_problems - detect TCP state problems, this tends to be very 
#                           noisy because there are a lot of crappy ip stack 
#                           implementations out there 
# 
#   disable_evasion_alerts - turn off the possibly noisy mitigation of 
#                            overlapping sequences. 
# 
# 
#   min_ttl [number]       - set a minium ttl that snort will accept to 
#                            stream reassembly 
# 
#   ttl_limit [number]     - differential of the initial ttl on a session versus 
#                             the normal that someone may be playing games. 
#                             Routing flap may cause lots of false positives. 
#  
#   keepstats [machine|binary] - keep session statistics, add "machine" to  
#                         get them in a flat format for machine reading, add 
#                         "binary" to get them in a unified binary output  
#                         format 
#   noinspect - turn off stateful inspection only 
#   timeout [number] - set the session timeout counter to [number] seconds, 
#                      default is 30 seconds 
#   memcap [number] - limit stream4 memory usage to [number] bytes 
#   log_flushed_streams - if an event is detected on a stream this option will 
#                         cause all packets that are stored in the stream4 
#                         packet buffers to be flushed to disk.  This only  
#                         works when logging in pcap mode! 
# 
# Stream4 uses Generator ID 111 and uses the following SIDS  
# for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Stealth activity 
#   2       Evasive RST packet 
#   3       Evasive TCP packet retransmission 
#   4       TCP Window violation 
#   5       Data on SYN packet 
#   6       Stealth scan: full XMAS 
#   7       Stealth scan: SYN-ACK-PSH-URG 
#   8       Stealth scan: FIN scan 
#   9       Stealth scan: NULL scan 
#   10      Stealth scan: NMAP XMAS scan 
#   11      Stealth scan: Vecna scan 
#   12      Stealth scan: NMAP fingerprint scan stateful detect 
#   13      Stealth scan: SYN-FIN scan 
#   14      TCP forward overlap 
 
preprocessor stream4: detect_scans, disable_evasion_alerts 
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# tcp stream reassembly directive 
# no arguments loads the default configuration  
#   Only reassemble the client, 
#   Only reassemble the default list of ports (See below),   
#   Give alerts for "bad" streams 
# 
# Available options (comma delimited): 
#   clientonly - reassemble traffic for the client side of a connection only 
#   serveronly - reassemble traffic for the server side of a connection only 
#   both - reassemble both sides of a session 
#   noalerts - turn off alerts from the stream reassembly stage of stream4 
#   ports [list] - use the space separated list of ports in [list], "all"  
#                  will turn on reassembly for all ports, "default" will turn 
#                  on reassembly for ports 21, 23, 25, 53, 80, 143, 110, 111 
#                  and 513 
 
preprocessor stream4_reassemble 
 
# http_decode: normalize HTTP requests 
# ------------------------------------ 
# http_decode normalizes HTTP requests from remote  
# machines by converting any %XX character  
# substitutions to their ASCII equivalent. This is 
# very useful for doing things like defeating hostile 
# attackers trying to stealth themselves from IDSs by 
# mixing these substitutions in with the request.  
# Specify the port numbers you want it to analyze as arguments. 
# 
# Major code cleanups thanks to rfp 
# 
# unicode          - normalize unicode 
# iis_alt_unicode  - %u encoding from iis  
# double_encode    - alert on possible double encodings 
# iis_flip_slash   - normalize \ as / 
# full_whitespace  - treat \t as whitespace ( for apache ) 
# 
# for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       UNICODE attack 
#   2       NULL byte attack 
 
preprocessor http_decode: 80 unicode iis_alt_unicode double_encode iis_flip_slash full_whitespace
 
# rpc_decode: normalize RPC traffic 
# --------------------------------- 
# RPC may be sent in alternate encodings besides the usual 
# 4-byte encoding that is used by default.  This preprocessor 
# normalized RPC traffic in much the same way as the http_decode 
# preprocessor.  This plugin takes the ports numbers that RPC  
# services are running on as arguments. 
# The RPC decode preprocessor uses generator ID 106 and does not 
# generate any SIDs at this time. 
 
preprocessor rpc_decode: 111 32771 
 
# bo: Back Orifice detector 
# ------------------------- 
# Detects Back Orifice traffic on the network.  This preprocessor 
# uses the Back Orifice "encryption" algorithm to search for  
# traffic conforming to the Back Orifice protocol (not BO2K). 
# This preprocessor can take two arguments.  The first is "-nobrute" 
# which turns off the plugin's brute forcing routine (brute forces  
# the key space of the protocol to find BO traffic).  The second 
# argument that can be passed to the routine is a number to use 
# as the default key when trying to decrypt the traffic.  The  
# default value is 31337 (just like BO).  Be aware that turning on 
# the brute forcing option runs the risk of impacting the overall 
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# performance of Snort, you've been warned... 
#  
# The Back Orifice detector uses Generator ID 105 and uses the  
# following SIDS for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Back Orifice traffic detected 
 
preprocessor bo: -nobrute 
 
# telnet_decode: Telnet negotiation string normalizer 
# --------------------------------------------------- 
# This preprocessor "normalizes" telnet negotiation strings from 
# telnet and ftp traffic.  It works in much the same way as the  
# http_decode preprocessor, searching for traffic that breaks up 
# the normal data stream of a protocol and replacing it with  
# a normalized representation of that traffic so that the "content" 
# pattern matching keyword can work without requiring modifications. 
# This preprocessor requires no arguments. 
# Portscan uses Generator ID 109 and does not generate any SID currently. 
 
preprocessor telnet_decode 
 
# Portscan: detect a variety of portscans 
# --------------------------------------- 
# portscan preprocessor by Patrick Mullen <p_mullen@linuxrc.net> 
# This preprocessor detects UDP packets or TCP SYN packets going to 
# four different ports in less than three seconds. "Stealth" TCP 
# packets are always detected, regardless of these settings. 
# Portscan uses Generator ID 100 and uses the following SIDS for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Portscan detect 
#   2       Inter-scan info 
#   3       Portscan End 
 
# preprocessor portscan: $HOME_NET 4 3 portscan.log 
 
# Use portscan-ignorehosts to ignore TCP SYN and UDP "scans" from 
# specific networks or hosts to reduce false alerts. It is typical 
# to see many false alerts from DNS servers so you may want to 
# add your DNS servers here. You can all multiple hosts/networks 
# in a whitespace-delimited list. 
# 
#preprocessor portscan-ignorehosts: 0.0.0.0 
 
# arpspoof 
#---------------------------------------- 
# Experimental ARP detection code from Jeff Nathan, detects ARP attacks,  
# unicast ARP requests, and specific ARP mapping monitoring.  To make use 
# of this preprocessor you must specify the IP and hardware address of hosts on # the same layer 2 segment as you.  
IP MAC combo per line. 
# Also takes a "-unicast" option to turn on unicast ARP request detection.  
# Arpspoof uses Generator ID 112 and uses the following SIDS for that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Unicast ARP request 
#   2       Etherframe ARP mismatch (src) 
#   3       Etherframe ARP mismatch (dst) 
#   4       ARP cache overwrite attack 
 
#preprocessor arpspoof 
#preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00 
 
# ASN1 Decode 
#----------------------------------------- 
# This is an experimental preprocessor.  ASN.1 decoder and analysis plugin  
# from Andrew R. Baker.  This preprocessor will detect abuses of the ASN.1  
# protocol that higher level protocols (like SSL, SNMP, x.509, etc) rely on. 
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# The ASN.1 decoder uses Generator ID 115 and uses the following SIDs for  
# that GID: 
#  SID     Event description 
# -----   ------------------- 
#   1       Indefinite length 
#   2       Invalid length 
#   3       Oversized item 
#   4       ASN.1 specification violation 
#   5       Dataum bad length 
 
preprocessor asn1_decode 
 
# Fnord  
#----------------------------------------- 
# This is an experimental preprocessor.  Polymorphic shellcode analyzer and 
# detector by Dragos Ruiu.  This preprocessor will watch traffic for  
# polymorphic NOP-type sleds to defeat tools like ADMutate.  The Fnord detector 
# uses Generator ID 114 and the following SIDs: 
#  SID     Event description 
# -----   ------------------- 
#   1       NOP-sled detected  
 
# preprocessor fnord 
 
# Conversation 
#------------------------------------------ 
# This preprocessor tracks conversations for tcp, udp and icmp traffic.  It 
# is a prerequisite for running portscan2. 
# 
# allowed_ip_protcols 1 6 17 
#      list of allowed ip protcols ( defaults to any ) 
# 
# timeout [num] 
#      conversation timeout ( defaults to 60 ) 
# 
# 
# max_conversations [num]  
#      number of conversations to support at once (defaults to 65335) 
# 
# 
# alert_odd_protocols 
#      alert on protocols not listed in allowed_ip_protocols 
 
preprocessor conversation: allowed_ip_protocols all, timeout 60, max_conversations 32000 
 
# Portscan2 
#------------------------------------------- 
# Portscan 2, detect portscans in a new and exciting way. 
# 
# Available options: 
#       scanners_max [num]  
#       targets_max [num] 
#       target_limit [num] 
#       port_limit [num] 
#       timeout [num] 
#       log [logdir] 
 
preprocessor portscan2: scanners_max 3200, targets_max 5000, target_limit 5, port_limit 20, timeout 60
 
# Experimental Perf stats 
# ----------------------- 
# No docs. Highly subject to change. 
#  
# preprocessor perfmonitor: console flow events time 10 
 
#################################################################### 
# Step #3: Configure output plugins 
# 
# Uncomment and configure the output plugins you decide to use. 
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# General configuration for output plugins is of the form: 
# 
# output <name_of_plugin>: <configuration_options> 
# 
# alert_syslog: log alerts to syslog 
# ---------------------------------- 
# Use one or more syslog facilities as arguments 
# 
# output alert_syslog: LOG_AUTH LOG_ALERT 
 
# log_tcpdump: log packets in binary tcpdump format 
# ------------------------------------------------- 
# The only argument is the output file name. 
# 
# output log_tcpdump: tcpdump.log 
 
# database: log to a variety of databases 
# --------------------------------------- 
# See the README.database file for more information about configuring 
# and using this plugin. 
# 
# output database: log, mysql, user=root password=test dbname=db host=localhost 
# output database: alert, postgresql, user=snort dbname=snort 
# output database: log, unixodbc, user=snort dbname=snort 
# output database: log, mssql, dbname=snort user=snort password=test 
 
# xml: xml logging 
# ---------------- 
# See the README.xml file for more information about configuring 
# and using this plugin. 
# 
# output xml: log, file=/var/log/snortxml 
 
# unified: Snort unified binary format alerting and logging 
# ------------------------------------------------------------- 
# The unified output plugin provides two new formats for logging 
# and generating alerts from Snort, the "unified" format.  The 
# unified format is a straight binary format for logging data  
# out of Snort that is designed to be fast and efficient.  Used 
# with barnyard (the new alert/log processor), most of the overhead 
# for logging and alerting to various slow storage mechanisms 
# such as databases or the network can now be avoided.   
# 
# Check out the spo_unified.h file for the data formats. 
# 
# Two arguments are supported. 
#    filename - base filename to write to (current time_t is appended) 
#    limit    - maximum size of spool file in MB (default: 128) 
# 
# output alert_unified: filename snort.alert, limit 128 
# output log_unified: filename snort.log, limit 128 
 
# trap_snmp: SNMP alerting for Snort 
# ------------------------------------------------------------- 
# Read the README.SNMP file for more information on enabling and using this 
# plug-in. 
# 
# 
 
#The trap_snmp plugin accepts the following notification options 
# [c],[p[m|s]] 
# where, 
#     c : Generate compact notifications. (Saves on bandwidth by 
#         not reporting MOs for which values are unknown, not 
#         available or, not applicable). By default this option is reset. 
#     p : Generate a print of the invariant part of the offending packet.  
#         This can be used to track the packet across the Internet. 
#         By default this option is reset. 
#     m : Use the MD5 algorithm to generate the packet print. 
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#         By default this algorithm is used. 
#     s : Use the SHA1 algorithm to generate the packet print. 
# 
# The trap_snmp plugin requires several parameters  
# The parameters depend on the Snmpversion that is used (specified) 
# For the SNMPv2c case the parameters will be as follows 
#  alert, <sensorID>, [NotificationOptions] ,  
#         {trap|inform} -v <SnmpVersion> -p <portNumber> <hostName> <community> 
# 
# For SNMPv2c traps with MD5 digest based packetPrint generation   
# 
# output trap_snmp: alert, 7, cpm, trap -v 2c myTrapListener myCommunity 
# 
# For SNMPv2c informs with the 'compact' notification option  
# 
#output trap_snmp: alert, 7, c, inform -v 2c myTrapListener myCommunity 
# 
# 
# For SNMPv3 traps with  
# security name = snortUser  
# security level = authentication and privacy 
# authentication parameters : 
#           authentication protocol = SHA ,  
#           authentication pass phrase = SnortAuthPassword 
# privacy (encryption) parameters  
#           privacy protocol = DES,  
#           privacy pass phrase = SnortPrivPassword 
# 
#output trap_snmp: alert, 7, trap -v 3 -u snortUser -l authPriv -a SHA -A SnortAuthPassword -x DES 
myTrapListener 
#For SNMPv3 informs with authentication and encryption 
#output trap_snmp: alert, 7, inform -v 3 -u snortUser -l authPriv -a SHA -A SnortAuthPassword -x DES 
myTrapListener 
 
# You can optionally define new rule types and associate one or  
# more output plugins specifically to that type. 
# 
# This example will create a type that will log to just tcpdump. 
# ruletype suspicious 
# { 
#   type log 
#   output log_tcpdump: suspicious.log 
# } 
# 
# EXAMPLE RULE FOR SUSPICIOUS RULETYPE: 
# suspicious $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC Server";) 
# 
# This example will create a rule type that will log to syslog 
# and a mysql database. 
# ruletype redalert 
# { 
#   type alert 
#   output alert_syslog: LOG_AUTH LOG_ALERT 
#   output database: log, mysql, user=snort dbname=snort host=localhost 
# } 
# 
# EXAMPLE RULE FOR REDALERT RULETYPE 
# redalert $HOME_NET any -> $EXTERNAL_NET 31337 (msg:"Someone is being LEET"; \ 
#   flags:A+;) 
 
# 
# Include classification & priority settings 
# 
 
include classification.config 
 
# 
# Include reference systems 
# 



  63 

 
include reference.config 
 
#################################################################### 
# Step #4: Customize your rule set 
# 
# Up to date snort rules are available at http://www.snort.org 
# 
# The snort web site has documentation about how to write your own  
# custom snort rules. 
# 
# The rules included with this distribution generate alerts based on 
# on suspicious activity. Depending on your network environment, your 
# security policies, and what you consider to be suspicious, some of 
# these rules may either generate false positives ore may be detecting 
# activity you consider to be acceptable; therefore, you are 
# encouraged to comment out rules that are not applicable in your 
# environment. 
# 
# Note that using all of the rules at the same time may lead to 
# serious packet loss on slower machines. YMMV, use with caution, 
# standard disclaimers apply. :) 
# 
# The following individuals contributed many of rules in this 
# distribution. 
# 
# Credits: 
#   Ron Gula <rgula@securitywizards.com> of Network Security Wizards 
#   Max Vision <vision@whitehats.com> 
#   Martin Markgraf <martin@mail.du.gtn.com> 
#   Fyodor Yarochkin <fygrave@tigerteam.net> 
#   Nick Rogness <nick@rapidnet.com> 
#   Jim Forster <jforster@rapidnet.com> 
#   Scott McIntyre <scott@whoi.edu> 
#   Tom Vandepoel <Tom.Vandepoel@ubizen.com> 
#   Brian Caswell <bmc@snort.org> 
#   Zeno <admin@cgisecurity.com> 
#   Ryan Russell <ryan@securityfocus.com> 
#  
#========================================= 
# Include all relevant rulesets here  
#  
# shellcode, policy, info, backdoor, and virus rulesets are  
# disabled by default.  These require tuning and maintance.   
# Please read the included specific file for more information. 
#========================================= 
 
#include $RULE_PATH/bad-traffic.rules 
#include $RULE_PATH/exploit.rules 
#include $RULE_PATH/scan.rules 
#include $RULE_PATH/finger.rules 
#include $RULE_PATH/ftp.rules 
include $RULE_PATH/telnet.rules 
#include $RULE_PATH/rpc.rules 
#include $RULE_PATH/rservices.rules 
#include $RULE_PATH/dos.rules 
#include $RULE_PATH/ddos.rules 
#include $RULE_PATH/dns.rules 
#include $RULE_PATH/tftp.rules 
 
#include $RULE_PATH/web-cgi.rules 
#include $RULE_PATH/web-coldfusion.rules 
#include $RULE_PATH/web-iis.rules 
#include $RULE_PATH/web-frontpage.rules 
#include $RULE_PATH/web-misc.rules 
#include $RULE_PATH/web-client.rules 
#include $RULE_PATH/web-php.rules 
 
#include $RULE_PATH/sql.rules 
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#include $RULE_PATH/x11.rules 
#include $RULE_PATH/icmp.rules 
#include $RULE_PATH/netbios.rules 
#include $RULE_PATH/misc.rules 
#include $RULE_PATH/attack-responses.rules 
#include $RULE_PATH/oracle.rules 
#include $RULE_PATH/mysql.rules 
#include $RULE_PATH/snmp.rules 
 
#include $RULE_PATH/smtp.rules 
#include $RULE_PATH/imap.rules 
#include $RULE_PATH/pop3.rules 
 
#include $RULE_PATH/nntp.rules 
#include $RULE_PATH/other-ids.rules 
#include $RULE_PATH/web-attacks.rules 
#include $RULE_PATH/backdoor.rules 
#include $RULE_PATH/shellcode.rules 
#include $RULE_PATH/policy.rules 
#include $RULE_PATH/porn.rules 
#include $RULE_PATH/info.rules 
#include $RULE_PATH/icmp-info.rules 
include $RULE_PATH/icmp.rules 
#include $RULE_PATH/virus.rules 
#include $RULE_PATH/chat.rules 
#include $RULE_PATH/multimedia.rules 
#include $RULE_PATH/p2p.rules 
#include $RULE_PATH/experimental.rules 
#include $RULE_PATH/local.rules 
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